PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Two-tier symmetry-breaking model of patterns on a catalytic surface

L. M. Pisment? R. Imbihl2 B. Y. Rubinsteint and M. I. Monirt
!Department of Chemical Engineering, Technion, Technion City, 32000 Haifa, Israel
2Minerva Center for Nonlinear Physics of Complex Systems, Technion, Technion City, 32000 Haifa, Israel
3Institut fir Physikalische Chemie und Elektrochemie, Univétditannover, D-30167 Hannover, Germany
(Received 19 August 1997; revised manuscript received 6 April 1998

We present a two-tier symmetry-breaking model on a catalytic surface mediated by propagating transition
fronts on two different scales. On the microscopmanoscalg level, there is a competition between two
alternative surface phases biased by the local level of a diffusing species. On the microscopic scale, relative
abundance of surface phases acts as a refractive variable biasing the balance between alternative states of the
diffusive activator, thereby causing either global oscillations or domain oscillations and spiral waves in an
extended system. The distribution of surface phases evolves on a longer time scale due to a curvature effect,
exhibiting a kind of a ripening process coupled with oscillatory dynani8$063-651X98)13506-1

PACS numbds): 82.65.Jv, 05.70.Ln

[. INTRODUCTION reaction rate. This bistability phenomenon is common for
bimolecular reactions with Langmuir-Hinshelwood kinetics.
Single-crystal studies of catalytic CO oxidation on Pt sur-The domains with prevailing alternative stationary states
faces conducted in recent years revealed a whole range efiolve dynamically due to a relatively slow surface phase
different spatiotemporal patterf$—6]. On Pt110), besides transition, so that the surface variable plays the role of a
elementary patterns like spiral wavgk3|, complex struc-  “slow inhibitor.”
tures involving different types of patterns on different length The surface phase transition acts in such a way that the
scales were also four{®]. The mechanism of the rate oscil- fraction of the X1 phase increases on a surface patch with
lations and patterns is based on adsorbate-induced surfaeehigh CO coverage, leading to an increaseda@sorption
phase transitions that are controlled by critical adsorbateate and eventually to a transition to the alternate state, and
coverages, i.e., the 1=1X2 transition in the case of vice versaln a lumped system, this leads to relaxation os-
Pt(110 and the X1= hexagonal phase transition in the cillations, and in a spatially extended system, to propagation
case of RWLOO [1,2,7,8. The phase transition affects the of surface activity waves, forming either spiral waves, target
reaction rate through the variation of the oxygen stickingpatterns, or isolated mobile wave fragmefits9—14. The
coefficient which for Rt100 is 2—3 orders of magnitude geometry of the emerging spatiotemporal structures is
higher on the X1 surface than on the reconstructed phasestrongly affected by the anisotropy of surface
whereas the corresponding factor fof1A1)) is only about diffusivities—a property that distinguishes patterns on sur-
1.5. faces from chemical patterns in liquid phase reactions. Glo-
At this time, the standard kinetic model of CO oxidation bal interactions through the gas phase serve as an additional
on P{110 includes three dynamic variables, the CO andsource of dynamic complexity leading to standing waves and
oxygen coverage, and the fraction of the surface occupied bgellular structure$3-6,10,13,14
one of the alternate phasésurface variablg[9]. The equa- The model by Krischer, Eiswirth, and Eift9] yields a
tions for the adsorbate coverages contain the usual kinetiealistic (at least in the qualitative senspicture of kinetic
expressions of the Langmuir-Hinshelwood type where theoscillations and pattern formation on thg t0) surface. Its
coefficients can be made dependent on the surface variabldisadvantage, however, is that it does not lend itself to a
thus accounting for the different adsorption rates and bindingormal treatment of the dynamics of surface reconstruction,
energies on the two surface phases; actually, the decisivdescribed in a purely phenomenological way with the help of
difference turned out to be the difference in the oxygen sticka piecewisely defined function of the CO coverage that in-
ing coefficient. The phenomenological dynamic equation forsures correct behavior fitting the experimental data. The
the surface variable is constructed in such a way that the lessodel also fails to take into account slow changes in cata-
active 1X2 phase is present at low CO coverage and thdytic activity which may be caused by surface roughening
more active X 1 phase exists at high CO coverage. and facetind15—17. These two aspects are in fact related,
Although the model contains three dynamic variables, itsince surface roughening is likely to occur as a result of
turned out to be qualitatively equivalent to a two-variablerepeated transitions between the two surface phases, which,
model, and can be mapped on a standard FitzHugh-Nagunue to their different density of surface atoms, involve a
(FN) system[10]. The oxygen coverage is more or lessmass transport of Pt atonf48]. Roughening or faceting
slaved to the CO coverage which plays the role of a “fastmight be incorporated into the kinetic model in a natural way
activator.” At a fixed surface phase composition, two alter-if the phase transition could be described more realistically
nate stationary states may be attained: one with a high COy means of a microscopic model.
coverage that blocks the oxygen access and thereby stifles In this paper, we present a two-tier symmetry-breaking
the reaction, and another with a low CO coverage and highemodel treating the surface phase transition explicitly and re-
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placing the phenomenological equation of the surface variwhere §<1 is the ratio of the microscopic and macroscopic
able by a microscale model that would describe dynamics ofcales, which is proportional in the physical model to the
domains corresponding to the two surface phases. The esguare root of the ratio of the surface diffusivities of Pt and
sence of the model is the assumption that the surface pha&O (adsorbatg Since Pt diffusivity is small, the borders
transition is a slow local process that leads to the formatiombetween the surface phases can be assumed to be almost
of a nanoscale pattern of surface phases, and manifests itsalfomically sharp.

in slow motion of interphase boundaries with the speed being The local value of long-range variahleintroduces a bias
dependent on the local value of CO coverage. In turn, thén favor of one of the surface states. If the coupling param-
visible (microscal¢ coverage pattern is determined by aver-eter« is positive, the lower state advances when the macro-
age abundance of surface phases within the diffusional rangeariable v (modeling CO coverageis positive. The two

of the adsorbed species. The faceting of the surface may lghases coexist at|v|<b=2/,/27. The speed of the motion
directly correlated in this model with the motion of inter- (neglecting the curvature efféds

phase boundaries, and takes place each time a certain loca-

tion is passed by the phase transition front. c=/6 6ysir[%arcsir(%\/2—7av)]557w(av). (3)

The dynamics of the surface phases described by this
model can be made similar to the dynamics of the surface
Our current aim is to sketch a skeleton model that can b&ariable in the phenomenological model of Krischer,

treated semianalytically to construct a qualitatively faithful Eiswirth, and ErtI[9]. The two values of the CO coverage
dynamic description. We shall operate, therefore, with thevhere the definition of the phenomenological function is
simplest possible nonlinear elements suitable for our purposehanged should correspond to the limitss +b/« of the

and neglect such realistic details as anisotropic diffusionrange ofv where the two surface states coexist.

Rather than considering realistic kinetic equations for the The macrovariabley in turn is affected by the relative
adsorbate coverages, we shall use a single equation for coabundance of surface phases, described by the coarse-grained
centration of a fast activatar that can relax to any of two variable . A general relation between andu can be de-
alternate states. The simplest suitable evolution equation of fined as

is

II. COARSE-GRAINED TWO-TIER MODEL

77(X)=Z3( f g0x,x)u(x’) dx’ =s|, @
vi=V?+(1-v>v—1. (1)
whereg(x,Xx") is a coarse-graining kernel with a character-
As in the standard FN model, the two states are biased by thstic range ofO(1) in the chosen dimensionless units and

level of the inhibiting variabler;, which is defined here in :8' gare constants. Assuming Sharp interphase bordﬁgan
such a way that the levej=0 corresponds to the Maxwell pe directly related to the surface-averaged area covered by
construction of the two alternate macrostates. We interpret ithe lower surface state<O0:

here as a surface state variable that models the inhibiting

action of the 1X 2 reconstruction. In view of the long diffu- , , ,

sional range of CO adsorbatmodeled by the activator con- ”(X):'g( J gxx")H(x’) dx’=s), ®)
centrationv), the variablen should becoarse grainedWe

shall interpret it as théocal averagefraction of one of the whereH(x) is 1 if the pointx is within a domain occupied
surface phases computed by spatial averaging over a surfaby the lower state, and 0 otherwise, a@cs are modified
area within the diffusional range of The activator acts as a constants.

pattern-forming agent on a large scale corresponding to the

diffusional range of a mobile adsorbed spedi€®). This is lll. GLOBAL OSCILLATIONS

the visible pattern observed experimentally on a ‘0 ) i ) i )
— 102 cm scale. The surface variabie, which is slow and The simplest solution of the coarse-grained equations is

nondiffusive, plays the same role of a refractory variable a@Ptained under conditions where the diffusional range of the
in the model by Krischer, Eiswirth, and Ef@)]. macrovariablev encompasses the entire surface so that it

The distinctive feature of the present model lies in designP!aYs the role of a global variable obeying Ef) integrated
ing the evolution equation of the surface variable. On g0Ver the entire surface:
smaller length scaléin a 10 '— 10" ® cm range, we conjec- —(1—p2)p— 6
ture a dynamic pattern of surface phases, consisting of is- ve=(1=v9v=7. ©)
lands of a minority phase immersed in a continuous majorityrnan the integrals in Eq¢4),(5) can be evaluated over the
phase. Unlike the phenomenological model by Krischerenﬁre surface as well, and the coarse-graining kegtelx’)
Eiswirth, and Ertl[9], we describe the surface state using age 1o ynity. If we assume that the lower surface state is a
“microvariable” u that can relax to two alternate states ningrity phase, and exists in the form of circular islands

standing for the surface phases. The dynamics of the micrqyficiently widely separated, so that their interaction can be
variable is described by a nonlinear diffusion equation with eglected] Eq. (5) can be rewritten as

cubic nonlinearity:

vy tu=86°V2u+(1—u?)u—av, 2 W:B(J f(l’)rzdr—s)zﬁ(n<r2>—s), (7)
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FIG. 1. A typical oscillation cycle ay<1; dynamics ob and#
are shown by solid and dashed curves, respectively.
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where f(r) is the instantaneous number density of islands
with the radiug andn is the total number density of islands.
The parametes can be interpreted as the surface fraction
corresponding to the Maxwell construction of the two mac-
rostates. This value serves in our model as a bias paramete
AssumingB>0, negative values af prevail at»>0. The
multistability range i 7| <b=2/\/27.

For the moment, we neglect the dependence of the bound
ary speed on the curvatufpresuming that the islands are
much larger than the diffusional range of the microvaripble ~ FIG. 2. The dependence of the rescaled periauh the rescaled
Then the change of radii is governed by E8).which can be  Pias parameteq and the coupling parameter at y<1.
transformed by averaging to the evolution equationof

q leaves us with a single dynamic equation, and the rescaled
7] - I = i
e =2pnoyi(av)(r)(x). (8  half-period7 2B8\sn Tis computed as

For any fixed size distributiofi(r), the mean radiugér) b d
can be expressed through the mean squared radfysand = n ]
then expressed throughwith the help of Eq(7). As long as -b1+ 5/q ¥(av (7))
the dependence of the boundary dynamics on curvature is
neglected, this is also possible for a dynamically evolving
distribution. Indeed, the distribution is then shifted rigidly The dependence of on the rescaled bias parametgand
during the oscillation cycle so théfr;t) =f(r+c(#»)t) and,  the coupling parameter are shown in Fig. 2.

(11)

as a consequence, the dispersjof) —(r)* remains invari- The above picture is modified if the changing levelsof
ant. _ remove the system from the multistability region of the mi-
If all islands are of the same size, crovariable or if islands shrink and disappear altogether

= _ while the system evolves along the bramch0. To preclude

(r)=\n"%(s+5/B)=\s/n(1+ nlq), 9 the first possibility, one has to require that the maximum

whereq= 8s>b. The final form of Eq.(8) is possible value Of_U churring during .the above gycle,
| mad = 2/v/3 remain within the multistability range. This re-
stricts the value of the parameter< 3. If all islands are of

7
H:K’ﬁ(“”) N/ (10 the same size, the minimum radius correspondingyte
—b in Eq. (7) is rpmin=/n_X(s—b/B), which restricts the
whereK =288y+/sn. parametef3>bl/s.

A typical picture of relaxation oscillations is obtained at  An arbitrary distribution can be treated in a similar way.
v<<1. Then the system evolves as follows. If, say, initially For example, for a uniform distribution of island sizes in the
v>0, the lower state advances apdncreases. The macro- range(r)—3A<r<(r)+3A, the required relation between
variablev continuously adjusts to a changing level gfit  the mean and mean squared radii is given(b§)=(r)?
decreases but remains on the upper branch untibaches — A2, so that the radicant in E¢Q) should be increased by
the limiting value p=b. After this,v drops on a fasO(vy) SA2.
time scale to the lower branch. The islands start to shrink, The lower tail of a distribution of island sizes may be
andv grows whilen decreases up to the lower critical value eliminated during a single cycle, but, as long as the curvature
n=—b, after whichv jumps back to the upper bran¢hig.  effect can be neglected, the residual distribution will remain
1); both branches of the oscillation cycle are symmetric.  stationary(or, more precisely, will rigidly oscillate The cur-

In the limiting case when the macrovariablés slaved to  vature effect should be felt, however, in the long run, causing
7, it can be replaced in E@8) by either the upper or lower a kind of Ostwald ripening under nonstationary conditions
root of the cubic (Fv?)v+ =0, respectively . (7). This  (see Sec. ¥
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IV. LOCALIZED OSCILLATIONS AND WAVES
IN AN EXTENDED SYSTEM

In an extended systenlL§1), Eq. (8) can still be re-
tained as a dynamic equation gf with local averaging un-
derstood as in Eq5). At y<1, the system relaxgstarting
from random initial conditionsto a pattern containing do-
mains with prevailing alternative states of the macrovariable.
The overall character of macroscopic dynamics depends on
the value of the dimensionless combinatign The ideal
form of a propagating plane wave i< 1 is computed in a
standard way by applying a relation analogous to Bgto
determine the speed of the macroscopic front

C= /6 sirl 3arcsin3v277)1=y(7), (12)

and then integrating Eq10) in the frame moving with this
speed. The resulting half period in space is jtSt wherer

is the half-period of the global oscillation cycle defined by
Eq. (12).

At moderately small values &€, a simulation run starting
from random initial conditions leads, following an initial re-
laxation period, to domain oscillations that may be also char-
acterized as a highly unharmonic standing wave pattern. A
typical relaxation oscillation cycle is shown in Fig. 3. In the
first snapshot, the upper sta&hown in the light end of the
grayscalg¢is a minority phase forming bean-shaped macrois-
lands. These islands grow through front propagation, while
macroislands of the alternative lower stdghown in dark
gray9 nucleate within, i.e., at locations that have been occu-
pied by the upper state for a long period of time.

The propagation does not, however, proceed all the way
to coalescence of upper-state islands, but is assisted by a
bulk transition within the lower majority state. The transition
moment is captured in Fig(&. Following the transition, the
upper state becomes the majority state, leaving recently FIG. 3. A typical transitory oscillation cycle in an extended
nucleated islands of the lower state. As a result, the lastystem (=0.56, K=0.05, «=0.3). Snapshots taken d#) t
snapshot in the series looks very much like a negative of the 118, (b) t=127,(c) t= 131 (transition moment (d) t=151. Lev-
original one. This completes the half period of the oscillation€!s of the macrovariables (left) and 7 (right) are shown in gray
cycle, whereafter the story repeats with the islands of th&cale.
alternate state but the size of the islands slightly increases. At
this stage, the overall picture combines features of froniThe radius distribution necessary for evaluation of the sur-
propagation and coherent oscillations but the pattern is stifface area occupied by the minority phase in &g.obeys the
transitory. The region of coherent oscillations graduallyfirst-order partial differential equatiofiPDE)
shrinks, and the final state achieved in the long run is a
disordered spiral pattertFig. 4). af  a(fe(v,r))

or 0, (15
V. RIPENING OF SURFACE PHASE DISTRIBUTION

The size distribution of islands of the minority phases
evolves at long times due to a weak dependence of the ve-
locity on curvature:

c=90y[y(av)—«d]. (13

For circular islandsx=r "%, and the dynamic equation for
radii is

=
+

FIG. 4. A disordered spiral pattern in an extended systgm (
z,/f(av)—é} (14) =0.56, K=0.05, «=0.3, t=2000). Levels of the macrovariables
|

dr
—=c(v,r)=4 > -
(w.r) Y v (left) and » (right) are shown in gray scale.

dt
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FIG. 5. Short-scale dynamics of the global variablehe cov-
erage fraction», and the mean radius5€E0.02, s=2.7, B
=0.9, @=0.2, y=4.0). -4 -4
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Wh'.Ch has to be so!ved together .Wlth E@) where 7 '.S FIG. 7. Snapshots of the ripening sequence takéa) at=2, (b)
defined by Eq(7). Since the velocityc(v,r) changes sign . _ _ _ _ _ _

. NP 7 . t=10, (¢c) t=12, and(d) t=66 (6=0.02, s=13.3, 8=1.42, «
during the oscillation cycle, Eq15) is ill-suited to a com- _g, y=0.2).
mon finite difference scheme of numerical integration but is '

readily solved by the method of characteristics. The charac- The growth process may be arrested by the instability of
teristics are defined by E¢l4); sincec(v,r) is a monotonic  |arge islands. Saturation of growth can be accounted for phe-
function Ofr, shocks are never formed, and the d|str|but|0nnomeno|ogica”y by introducing a dependence of the growth

is well behaved. The ripening process should generally leaghte on curvature that has a maximum at a certain @it
to slow elimination of smaller islands and growth of the

average island size. _ , V1. BOUNDARY DYNAMICS

Figure 5 shows the dynamics of the global variab|¢he
coverage fractiory, and the mean radius over the length of The presumption of a circular shape is well justified only
several periods. The form and period of oscillations changewhen the interaction between islands is negligible. At higher
slowly, in parallel with slow evolution of the island size densities of the minority phase, or, moreover, under condi-
distribution. The long-time dynamics of statistical character-tions when the phases are interspersed and neither forms a
istics starting from a Gaussian distribution is shown in Fig.connected continuum, the boundary dynamics is governed
6. To eliminate short-scale dynamics, all values are comlocally by Eq. (13) but the radius distribution is not well
puted here at the lowest point of each oscillation cycle. Dis-defined.
persion gradually increases, while the skewness becomes We have carried out detailed modeling of the ripening
negative. Elimination of smaller islands becomes substantigbrocess with the help of a Lagrangian algorithm based on the
after the lower tail of the distribution has reached the lowerocal equation of boundary motion. Each island is repre-
cutoff radius. Following this, the island number density de-sented by its boundary which in turn is approximated as a
creases, the growth of the mean radius accelerates, and thelygon, i.e., a directed array of the points in a plane, which
trend of the evolution of the skewness reverses, reflectingropagates according to E@.3) with the velocity dependent
preferential growth of larger islands. The total area occupiedn the instantaneous value ofand the local curvature ap-
by the islands at the lowest point of each oscillation cyake proximated by finite differences. The long-scale variable
at any other comparable phase of the cyobenains constant

to a high degree of accuracy.
1
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FIG. 8. Dynamics of average radiddefined as ratio of total

FIG. 6. Long-scale dynamics of the number of islandsnean  ratio S of islands to their total perimetdé?) corresponding to the
radius(r), dispersions?, and skewness, of the island size distri- sequence shown in Fig. 7. A sharp jumptat12 corresponds to
bution (6=0.02, s=2.7, =0.9, «=0.2, y=4.0). elimination of the smaller island.



2070 PISMEN, IMBIHL, RUBINSTEIN, AND MONIN PRE 58

treated also in these computations as a global variable, and VIl. CONCLUSION
its dynamics determined by E§6), where n is expressed

through the total instantaneous area of the islands. The co The two-tier model described above combines features

putation algorithm includes updating the boundary checkinnf](3und in the standard FitzHugh-Nagumo model at different
' Qatios of characteristic relaxation times and diffusivities of

for intersections, computation of the area, and updating of o .
. S . ) .~ the species involved. On the macroscopic levels a fast
A typical ripening sequence obtained by numerical simu- ctivator, whilen plays aty<1 the role of a nondiffusive
lation is shown in Fig. 7. As expected, the ripening processa K 77 plays aty

leads to elimination of smaller islands, while the surviving .SIOW inhibitor. At the same time, on th.e microscopic level,
islands approach a circular shape. The average radius, ds-2 .SIOW short-range activator white is a fast Iong—range
fined as the ratio of the perimeter to the area occupied by tht h|b|t0r._ The two Ievels.are relatgd by the averaging proce-
minority phase, exhibits steady growth on the background o ure defining the_evqluyon equation 9t The physical ori-

P P gin of the averaging is in sampling of large surface areas by
oscillations as seen in Fig. 8. e i

The ripening can be suppressed on a rough surface. SeﬁIje ﬂlfﬂéslve_bmacrovfarla?le. h . | : d
induced roughening may be caused by surface modificatiop The 'St”. ution of surface p 1ases rpens a_t ong times due
taking place at locations traversed by the transition front be'? preferential growth of Iarge_r Islanas. Th.G. ripening process
tween the alternate surface states. The surface modificatidi®Y be arrested by ;urfac_e inhomogeneities, either nascent
may also compensate the ripening process by gradually lon?! developing dynamically in the course of the process.
ering the upper limit of island growth during an oscillation
cycle. The effect of stabilization of surface phase distribution
due to reactive roughening will be described in a forthcom- This research was supported by the Ministry of Science
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